
        International Journal of Advanced Research in   ISSN: 2349-2819  

                             Engineering Technology & Science   
                     Email: editor@ijarets.org         Volume-10 Issue-8 August-2023               www.ijarets.org 
 

Copyright@ijarets.org                                                                                                                           Page  45 

 

DIAGNOSING ECG AUTOMATICALLY USING BY 

CONVOLUTIONAL NEURAL NETWORK 
 

Anirban Bhattacharya 

Research Scholar, School of Technology and Computer Science 

Glocal University, Mirzapur Pole, Saharanpur (U. P.) India. 

 

Prof. (Dr.) Geetu Soni 

Research Supervisor, School of Technology and Computer Science 

Glocal University, Mirzapur Pole Saharanpur, (U.P) India. 

 

Abstract: The database consisted of more than 4000 ECG signal instances extracted from outpatient ECG 

examinations obtained from 47 subjects: 25 males and 22 females. Cardiovascular disease (CVD) is the 

most common class of chronic and life-threatening diseases and, therefore, considered to be one of the 

main causes of mortality. The proposed new neural architecture based on the recent popularity of 

convolutional neural networks (CNN) was a solution for the development of automatic heart disease 

diagnosis systems using electrocardiogram (ECG) signals. More specifically, ECG signals were passed 

directly to a properly trained CNN network.  The confusion matrix derived from the testing dataset 

indicated 99% accuracy for the “normal” class. For the “atrial premature beat” class, ECG segments were 

correctly classified 100% of the time. Finally, for the “premature ventricular contraction” class, ECG 

segments were correctly classified 96% of the time. In total, there was an average classification accuracy 

of 98.33%. The sensitivity (SNS) and the specificity (SPC) were, respectively, 98.33% and 98.35%. The 

new approach based on deep learning and, in particular, on a CNN network guaranteed excellent 

performance in automatic recognition and, therefore, prevention of cardiovascular diseases. 
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Introduction 

For many years, doctors have been aware that cardiovascular diseases constitute a class of diseases considered 

to be one of the main causes of mortality [1]. Cardiovascular diseases occur in the form of myocardial 

infarction (MI). Myocardial infarction, commonly referred to as heart attack, stands for the failure of heart 

muscles to contract for a fairly long period of time. Using appropriate treatment within an hour of the start of 

the heart attack, the mortality risk of the person who suffers from a heart attack in progress can be reduced. 

When a heart condition occurs, the first diagnostic check consists of an electrocardiogram (ECG), which, 

therefore, is the main diagnostic tool for cardiovascular disease (CVD). The electrocardiograph detects the 

electrical activity of the heart during the test time, which is then represented on a graphic diagram that 

reflects cyclical electrophysiological events in the cardiac muscle [2]. By conducting a careful analysis of 

the ECG trace, doctors can diagnose a probable myocardial infarction. It is important, however, to underline 

that the sensitivity and specificity of manual detection of acute myocardial infarction are 91% and 51%, 

respectively [3]. 

Developing a computer-aided system to automatically detect MI would help the cardiologists make better 

decisions. Hence, lately, various studies have been conducted on automatic MI detection. Given the 

nonlinearity of the heart anomaly classification, techniques based on neural networks have recently been 

adopted. In a precedent study, the authors proposed a training technique based 
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on a radial basis probabilistic neural network (RBPNN) in order to offer an efficient solution in the 

diagnosis of cardiovascular illness [4]. The proposed method has been tested for ECG analysis and the 

detection of abnormal heartbeats that have been classified by the network in the related pathologies. 

Recently, authors have successfully experimented with the newest and most innovative neural network 

(NN) models [5,6] and, more specifically, machine and deep learning techniques, such as the convolutional 

neural networks (CNN) and audio biometrics techniques [7–9]. CNN has been utilized in arrhythmia 

detection, coronary artery disease detection, and beats classification [10–12]. A deep belief network has 

been used to classify signal quality in ECG [13]. 

Some researchers have implemented 11-layer CNN to detect MI [14]. The authors have demonstrated the 

use of a shallow convolutional neural network, only focusing on inferior myocardial infarction. This network 

benefits from the use of varying filter sizes in the same convolution layer, which allows it to learn features 

from signal regions of varying lengths. 

In [15], the authors proposed a classification system of cardiovascular diseases using the MLP (Multi 

Layer Perceptron) network and the CNN network. In particular, they compared the results obtained by 

both models, using the same data set but different classes. There were two classes used in the MLP 

network: “arrhythmias” and “normal”, while nine classes were used for 4-layer CNN. ECG data used for 

the training/validation and test dataset were downloaded from PhysioBank.com and kaggle.com. This 

study showed low performance both using the MLP network and the CNN network, i.e., 88.7% and 83.5%, 

respectively. 

There are many other studies that deal with the classification of heart disease via the ECG signal using deep 

learning algorithms based on convolutional neural networks. Table 1 shows the list of the main techniques 

comparing the learning models used, the parameters of CNN implemented, and the obtained performance. 

 

Many other papers extract functionality from the PQRST complex and take advantage of machine learning 

algorithms based on other techniques. In [19], the authors used rough sets (RS) and quantum neural network 

(QNN) to recognize electrocardiogram (ECG) signals. For feature extraction (Peaks-P, Q, R, S, and T 

waves), after normalization of signals, the wavelet transform (WT) was used. Then, the attribute reduction 

of RS was applied as preprocessor so that redundant attributes and conflicting objects could be deleted 

from the decision-making table but retain efficient information losslessly. After that, the classification 

modeling and forecasting test based on QNN was trained using a gradient descent method; the accuracy of 

these systems was 91.7%. 

In [20], RR interval is calculated using the recordings from the MIT-BIH Arrhythmia Database. MLPNN 

and SVM (Support Vector Machine) classifiers are compared in this paper. Results show that MLPNN is 

good for testing performance, while SVM shows good training performance. 

In [21], the authors proposed a survey on the classification of ECG signals based on machine learning 

techniques other than CNN. 

Table 1 of the study highlights the main techniques for classifying ECG signals, including the number 

of features, feature names, pre-processing techniques, database, modeling techniques, performance 

measures used, and accuracy achieved in each paper. 

This paper proposed a low-complexity solution for automatic heart disease recognition based on the direct 

application of a CNN-based classification network to EGC signals, thus bypassing any possible heart 

disease ECG signals from the time domain to other domains, e.g., frequency domain as MFCC (Mel-

Frequency Cepstral Coefficients), wavelet, etc. This paper evaluated the performance of a classifier in the 

following three classes: “normal”, “atrial premature beat”, and “premature ventricular contraction”. The 

obtained performances were remarkable. 

ECG Signal and Dataset 

From a graphic or numerical point of view, electrocardiogram (ECG) represents the electrical activity of 

the heart during its operation. The most important elements of an ECG waveform, which repeats for each 

cardiac cycle, are shown in Figure 1. 
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Figure 1. A typical electrocardiogram (ECG) waveform and its characteristic patterns (P and T waves, PR 

and ST segments, PR and QT intervals, as well as the QRS complex). 

ECG is carried out to provide information about different heart diseases that a person can suffer from [22], 

in order to guarantee effective therapy. 

According to international conventions, the specific points that are identified in the trace of an 

electrocardiogram are labeled with the letters P, Q, R, S, T and, in particular, are the following: 

P wave: the first wave that occurs in the ECG cycle, a small deflection that represents atrial 

depolarization or most commonly called “atrial contraction”; 

T wave: represents the depolarization of ventricles or most commonly called “ventricular relaxation”; 

Q, R, and S waves: together, these waves form the so-called QRS complex. The QRS complex represents 

the contraction of the ventricles or, technically speaking, the depolarization complex of the ventricles. In 

particular, the Q wave represents the depolarization of the interventricular septum, the R wave reflects the 

depolarization of the main mass of the ventricles, and the S wave is the final depolarization of the ventricles 

at the base of the heart. 

Taken together, the P, Q, R, S, and T waves make up the so-called PQRST complex. Cardiologists denote the 

interval between two PQRST complexes by the term “R-R interval”, which corresponds to a cardiac cycle. 

Other parameters, which have been extensively used to make medical diagnoses using the ECG trace, are: 

PR interval or PQ interval: the PR interval is a stretch formed by the P wave and the PR segment (rectilinear 

stretch) that begins with the P wave, that is, during the first deflection, and ends at the QRS complex. This 

interval indicates the time that the depolarization wave takes propagating from the atrial sinus node along 

the part of the electrical conduction system of the heart present on the myocardium; 

ST segment, i.e., the time between the end of the QRS complex and the start of the T wave; 

QT interval, i.e., the time between the beginning of the QRS complex and the end of the T wave, 

which is the electrocardiographic manifestation of ventricular depolarization and repolarization [23]. 

When an ECG is performed on a patient suffering from heart disease, the diagram outlines a different 

waveform from that shown in Figure 1. For example, the QT interval may be longer than normal, 

indicating that the patient may be suffering from a ventricular arrhythmia; the ST segment may have an 

elevation, which may be associated with myocardial infarction [24,25]. 

One of the most commonly used databases on the field is PhysioNet [26,27]; in particular, the MIT-
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BIH arrhythmia database was used in this study, as shown in Table 1. A large collection of recorded 

physiologic signals is available under the Open Data Commons—Public Domain Dedication & Licence v1.0 

[28]. 

The PhysioNet database is composed of 48 ECG recordings of two-channel ambulatory, each 30 min long, 

associated with different clinical pathologies (e.g., ventricular and supraventricular arrhythmia, ventricular 

tachyarrhythmia, atrial fibrillation, etc.). 

The database contained ECG recordings from 47 subjects: 25 males aged between 32 and 89 years and 22 

females aged between 23 and 89 years. Twenty-three recordings were chosen at random from a set of 

4000 24-h ambulatory ECG recordings collected from a mixed population of inpatients (about 60%) and 

outpatients (about 40%) at Boston’s Beth Israel Hospital; the remaining 25 recordings were selected from 

the same set to include less common but clinically significant arrhythmias that would not be well-

represented in a small random sample. The recordings were digitized at 360 samples per second per channel 

with an 11-bit resolution over a 10 mV range. 

Cardiologists independently annotated each recording; disagreements were resolved to obtain the 

computer-readable reference annotations for each beat (approximately 110,000 annotations in all) included 

in the database. 

The database is made up of three classes: 

Normal; 

Atrial premature beat; 

Premature ventricular contraction. 

Figure 2 shows the differences in the ECG wave between the normal beat, the premature atrial beat, and 

the premature ventricular contraction. The first graph of Figure 2 shows the ECG wave of a normal beat, 

i.e., a heartbeat not affected by pathologies. This graph could be traced back to the “ideal” one in Figure 

1. The second graph shows the ECG wave affected by a premature atrial beat or premature atrial contraction 

(PAC). 
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Figure 2. ECG waveforms of the three heartbeat classes. 

 

It was a common cardiac dysrhythmia characterized by premature heartbeats originating in the atria. 

While the sinoatrial node typically regulated the heartbeat during normal sinus rhythm, PACs occurred 

when another region of the atria depolarized before the sinoatrial node and thus triggered a premature 

heartbeat. Therefore, the difference from a normal ECG wave lied in the PR segment that was formed 

prematurely. In Figure 2, “RR longer” stands for the time between QRS complexes, while “SA reset” 

indicates the reformation of electrical impulse beginning in the sinoatrial (SA) node and propagating to the 

atrioventricular (AV) node. 

The third graph shows an ECG wave affected by premature ventricular contraction (PVC). 

It was a relatively common event where the heartbeat was initiated in the ventricles rather than by the 

sinoatrial node. 

From what has been said, it is clear now how an automatic diagnosis system must perform in detecting 

these differences in duration and shape of the waves and segments that make up the PQRST complex. 

The used dataset was not recorded by the authors but originated from a 2001 study by Moody et al. 

[26]. Therefore, the authors were not responsible for the applied data collection procedure. Original 

authors of the database stated that all ethical requirements had been followed. Moreover, the database is 

available online for an extended period now and has been used extensively in many recent publications (see 

Table 1). Finally, all records in the database have been anonymized. 

ECG Diseases Classification Based on CNN 

CNN General Characteristics and Architecture Adopted 

Convolutional neural networks, or CNNs, are a specialized kind of neural network for processing data that has 

a known grid-like topology. Examples include time-series data, which may be considered as a 1-D grid taking 

samples at regular time intervals, and image data, which may be considered as a 2-D grid of pixels. 

The general characteristics and architecture of this network are described in [29], where the only difference 

is the sample rate used. In this study and also in [30], the sample rate was 44.1 kHz instead of 8 kHz. 

The deep convolutional neural network is mainly composed of: 

1D convolution layers; 

Batch normalization layers; 

ReLU (Rectified Linear Units) layers; 

Pooling layers; 

Softmax. 

Only in the first convolution, a convolutional kernel composed of 80 elements was used, with respect 

to the subsequent convolution layers where it was set to 3, with the aim of reducing the computational 

cost. 

After each convolution, Batch normalization was carried out to avoid the explosion of the parameters and 

the phenomenon of “vanishing gradients”. Batch normalization allowed training deep networks and was 

applied after each convolutional layer and before performing the ReLU (rectified linear activation 

function). The level of pooling in CNN, placed before RELU, reduced the problem of data overfitting by 

the network, taking the input size by half the actual input. 

Unlike the classic CNN, which use fully connected neurons as their output layer, this network performed 

a single AvgPool and then a LogSofMax softmax, followed by a natural logarithm log (softmax (x)). 

Figure 3 shows the structure of the proposed convolutional neural network. 
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Figure 3. Convolutional neural network architecture. 
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Deep neural networks could both extract and classify the representation of features, rather than perform 

these two functions separately. After being processed, the ECG recording was sent to the CNN network 

as an input for the classification of pathologies by means of the ECG signal in three classes: normal, atrial 

premature beat, and premature ventricular contraction, based on convolutional neural networks (CNN). 

Training/Validation and Testing Dataset 

Neural network input consists of 30-s segments where every second of ECG recording is equivalent to 360 

samples, for a total of 10,800 samples. 

So, dataset presents the following classes: 

“Normal” class, containing 1421 ECG segments; 

“Premature ventricular contraction” class, containing 335 ECG segments; 

“Atrial premature beat” class, containing 133 ECG segments. 

This dataset was subsequently divided into two different datasets, see Figure 4 below: 

 

 

Figure 4. The distribution of ECG segments used for learning (70%) and testing (30%). Thirty percent of 

the learning dataset was used for the validation of the network. 

Training/validation set, consisting of 995 segments for the “normal” class, 234 segments for the 

“premature ventricular contraction” class, and 93 segments for the “atrial premature beat” class. The 70% 

of this set was used for the training, and the other 30% was used for the testing; 

Testing set, consisting of 426 segments for the “normal” class, 101 segments for the “premature 

ventricular contraction” class, and 40 segments for the “atrial premature beat” class. 

At first, the network was trained by entering the data relating to the “training set” as input, then it was 

validated using the “validation set”, in order to evaluate the performance of the neural network (the 

percentage of loss and accuracy). Finally, the “testing set” was applied to validate and verify, through the 

accuracy estimate, the robustness of the neural network to data external to the training/validation set. 

Methods 

As previously stated, for the purposes of performance evaluation, the proposed study used the PhysioNet 

database, typically employed as a reference database in the automatic classification of cardiac pathologies 

based on ECG signals. From this dataset, the data relating to learning and testing of the neural network 

was obtained for the assessment of classification accuracy. Accuracy indicated that the network performed 

great classification of the two classes related to heart disease (“atrial premature beat” and “premature 

ventricular contraction”) and the one relating to the state of good health. Based on the results obtained from 

the confusion matrix, it was possible to evaluate the proposed method, applying the statistical classification 

functions [31]: sensitivity, also known as a true positive ratio (TPR), specificity, also known as a true negative 

ratio (TNR), Fall - Out, also known as a false positive ratio (FPR), and the measure of the test accuracy. 
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Hence, it was possible to define the meaning of each statistical classification parameter described above: 

sensitivity indicated the percentage of ECG recordings belonging to a specific category and correctly 

classified in that category; specificity measured how often the classifier could classify the ECG recordings not 

belonging to that category; Fall–Out indicated that ECG recordings were considered to belong to a specific 

category, but, in reality, they were not part of it; false discovery ratio indicated that ECG recordings were not 

considered to belong to a specific category but that, in reality, they were part of it; F1 score took into account 

precision and recovery of the test, where precision was the number of true positives (TP) divided by the 

number of all positive results, i.e., true positives (TP) plus false positives (FP); while recovery was the 

number of true positives (TP) divided by the number of all tests that should have been positive, that is, true 

positives (TP) plus false negatives (FN). 

The following equations relate to the classification functions previously described. 

TPR =
 TP 

, (1) 

TP + FN 

TNR =
     TN 

, (2) 

FP + TN 

FPR = 1 − TNR, (3) 

FDR =
     FP 

, (4) 

FP + TP 

F =
 2TP 

. (5) 

2TP + FP + FN 

Performance Analysis 

Test Results 

In this section, the results of training and subsequent validation of the neural network are presented and 

discussed. Figure 5a,b represents the progress of the training and validation loss and the progress of the 

training and validation accuracy, respectively. As the graphs show, after 100 epochs, training and validation 

losses stabilized at a value close to zero (Figure 5a), while training and validation accuracy stabilized at 

100%. 

Such data were very encouraging, as it was understood that there was a good percentage of accuracy in 

the classification of the three classes described above. 

In order to evaluate the performance of the CNN network with ECG sequences external to the training 

dataset, the accuracy obtained with the “testing set” was assessed. Figure 6 shows the relative confusion matrix. 

The matrix highlighted an average classification accuracy level of 98.33%. 

The results obtained in terms of the statistical parameters described in Section 5 are shown in Table 

3. 
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Figure 5. (a) Training and validation losses, (b) training and validation accuracy. 

 

 

Figure 6. Confusion Matrix for “testing set”. 

Table 3. The table reports the overall values of accuracy TPR, TNR, TPR, TDR, and F1 score. 

 

α Class TPR TNR FPR FDR F1 Score 

1 Normal 99.0% 97.1% 2.9% 1% 98.0% 

2 Atrial premature beat 100% 99.0% 1.0% 0% 99.5% 

Premature ventricular contraction 96.0% 98.96% 1.04% 4% 97.5% 3 
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Mean Accuracy 98.33% 98.33% 98.35% 1.65% 1.66% 98.33% 

 

Cross-Validation Analysis 

In this paragraph, we have described the method used for the cross-validation of data, which was used to obtain 

reliable estimates of the generalization error of the model, or how the CNN network behaves on data other 

than learning data. 

 

 

In particular, K-fold [32] cross-validation was used in this study, which involved randomly dividing the 

training dataset into k parts without reintegration: the K-1 parts were used for training the model, and a 

part was used for testing. This procedure was repeated k times so as to obtain k models and performance 

estimates. 

Subsequently, the average performance of the models was calculated on the basis of the different 

independent subdivisions to obtain an estimate of the performance that was less sensitive to the 

partitioning of the training data. 

Since k-fold cross-validation is a resampling without reintegration technique, the advantage of this 

approach is that each sample point will be part of the training and test datasets only once, which provides 

a lower variance estimate of the template performance. 

For this study, the training dataset was divided into ten parts, K = 10, and during the ten iterations, nine parts 

were used for training, and one part was used as a test set for model evaluation. In addition, the estimated 

performance Ei (for example, the accuracy of the classification) of each part was then used to calculate 

the average estimated performance E of the model. Figure 7 depicts the concept of the k-fold cross-

validation technique. The average accuracy and standard deviation for the model used in this study were 

96.8 ± 1.2%. 

 

Figure 7. K-fold cross-validation method with subdivision of the training set into k = 10 parts. 

Discussion 

Table 4 shows a comparison between our method and other methods in terms of feature extraction (FE), the 

model used, the system’s accuracy, and the statistical classification accuracy. 

Hereinafter, the differences between this work and the state-of-the-art have been discussed. In [33,34], 

the authors used the extraction of the decision tree (DT) and R-peak (RP) as features and did not apply 
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convolutional neural networks (CNN) but rather the discrete wavelet transformation (DWT) and the feed-

forward neural network (FFNN). The authors claimed an average accuracy of 96.56% and 87.66%, 

respectively, while, in our study, the average accuracy was equal to 98.1%. This result was higher than 

the result proposed in [33,34]. 

Compared to the approaches proposed in [5,14–16,33,34], our method had higher classification 

performances. As far as the studies proposed in [17,18] are concerned, it is evident that they had quite 

comparable performances, but they used more hidden layers than our study, with a consequent increase in 

computation costs. In addition, they did a preprocessing of data using wavelet transformation, which 

implied an additional computational cost. From the point of view of the structure of the neural network, 

in [17], in particular, five layers (two convolution layers, two down sampling layers, and one full 

connection layer) plus the output layer formed by Softmax were used for classification; however, we used 

another structure (previously described), which was more robust to the “vanishing gradients” phenomenon. 

 

In addition, to ensure that the model was correct, we applied the K-fold technique (previously described) 

for cross-validation, obtaining an average accuracy of 96.8% and a standard deviation of ±1.2%. 

Usually, the processing unit implements the automatic disease classification algorithm described above, 

showing the result of the diagnosis on display. A possible alternative is to transmit in real-time ECG 

sequences via data cellular connection (4G dongle) [35,36] to a cloud platform, where an automatic ECG 

diagnosis is implemented in “as a service” mode. The robustness to the IP (Internet Protocol) packet loss, 

typical of a 4G data connection, was verified by sending the test database several times from a transmitter 

to a 4G data receiver. The classification results confirmed the same values obtained in the case of processing 

on the local board. 

Conclusions 

This paper proposed an automated heart disease recognition technique based on recent and innovative 

CNN networks. The proposed technique had high accuracy and had low complexity of implementation. 

This approach harnessed the potential of deep learning to capture the typical characteristics of given heart 

disease in the ECG signal domain. 

Using the “validation set”, the proposed method yielded the following results: 

98.33% mean accuracy; 

98.33% sensitivity; 

98.35% specificity; 

1.65% false positive ratio; 

1.66% false negative ratio; 

98.33% F1 score. 

By comparing and contrasting various methods in the “Discussion” section, we could affirm that the 

method applied in the present paper yielded considerably better performances than those of the state-of-

the-art. 
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